Chapter 10 Drill

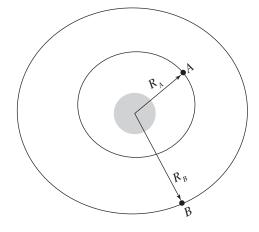
The answers and explanations can be found in Chapter 17.

Section I: Multiple Choice

- 1. An object has an altitude of 2 times the Earth's radius, r_{E} , and experiences some force of gravity, $F_{g,0}$. If the object's altitude is doubled, then the new force of gravity will be
 - (A) $4F_{g,0}$

(B)
$$\left(\frac{25}{9}\right)F_{g,0}$$

(C)
$$2F_{g,0}$$


(D)
$$\left(\frac{1}{2}\right)F_{g,0}$$

(E) $\left(\frac{9}{25}\right)F_{g,0}$

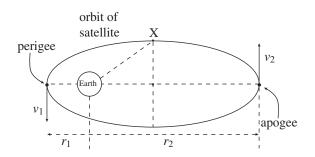
- 2. At the surface of Earth, an object of mass *m* has weight w. If this object is transported to a height above the surface that's twice the radius of Earth, then, at the new location.
 - (A) its mass is m/2 and its weight is w/2
 - (B) its mass is m and its weight is w/2
 - (C) its mass is m/2 and its weight is w/4
 - (D) its mass is m and its weight is w/4
 - (E) its mass is m and its weight is w/9
- 3. A moon of mass *m* orbits a planet of mass 100*m*. Let the strength of the gravitational force exerted by the planet on the moon be denoted by F_1 , and let the strength of the gravitational force exerted by the moon on the planet be F_{2} . Which of the following is true?
 - (A) $F_1 = 100F_2$
 - (B) $F_1 = 10F_2$
 - (C) $F_1 = F_2$
 - (D) $F_{2}^{1} = 10^{2}F_{1}$ (E) $F_{2} = 100F_{1}$

- 4. Humans cannot survive for long periods under gravity more than 4 times what we experience on Earth. If a planet were discovered with the same mass as Earth, what is the smallest radius it could have (in terms of Earth's radius, $r_{\rm E}$) without being dangerous to humans?
 - (A) (B) $\frac{1}{4}r_{\rm E}$ (C) $\frac{1}{2}r_{\rm E}$
 - (D) $2r_{\rm F}$
 - (E) $4 r_{\rm F}$
- 5. Humans cannot survive for long periods under gravity more than 4 times what we experience on Earth. If a planet were discovered with the same mass as Earth, what is the smallest volume it could have (in terms of Earth's volume, $V_{\rm E}$), without being dangerous to humans? Assume that the planet is a sphere.
 - (A) $\frac{1}{8}V_{\rm E}$ (B) $\frac{1}{4}V_{\rm E}$ (C) $\frac{1}{2}V_{\rm E}$

 - (D) 2 V_F
 - (E) $4 V_{\rm E}$
- 6. A moon of Jupiter has a nearly circular orbit of radius Rand an orbit period of T. Which of the following expressions gives the mass of Jupiter?
 - (A) $2\pi R/T$
 - (B) $4\pi^2 R/T^2$
 - (C) $2\pi R^3/(GT^2)$
 - (D) $4\pi R^2/(GT^2)$
 - (E) $4\pi^2 R^3/(GT^2)$

- Two large bodies, Body A of mass *m* and Body B of mass 4*m*, are separated by a distance *R*. At what distance from Body A, along the line joining the bodies, would the gravitational force on an object be equal to zero? (Ignore the presence of any other bodies.)
 - (A) *R*/16
 - (B) *R*/8
 - (C) *R*/5
 - (D) *R*/4
 - (E) *R*/3
- 8. The mean distance from Saturn to the Sun is 9 times greater than the mean distance from Earth to the Sun. How long is a Saturn year?
 - (A) 18 Earth years
 - (B) 27 Earth years
 - (C) 81 Earth years
 - (D) 243 Earth years
 - (E) 729 Earth years
- 9. The Moon has mass *M* and radius *R*. A small object is dropped from a distance of 3*R* from the Moon's center. The object's impact speed when it strikes the surface of the Moon is equal to $\sqrt{kGM/R}$ for *k* =
 - (A) $\frac{1}{3}$
 - (B) $\frac{2}{3}$
 - (C) $\frac{3}{4}$
 - (D) $\frac{4}{3}$ (E) $\frac{3}{2}$

- 10. Two satellites, A and B, orbit a planet in circular orbits having radii R_A and R_B , respectively, as shown above. If $R_B = 3R_A$, the velocities v_A and v_B of the two satellites are related by which of the following?
 - (A) $v_B = v_A$
 - (B) $v_B = 3v_A$
 - (C) $v_B = 9v_A$
 - (D) $v_B = v_A \sqrt{3}$


(E)
$$v_B = \frac{v_A}{\sqrt{3}}$$

Section II: Free Response

- 1. Consider two uniform spherical bodies in deep space. Sphere 1 has mass m_1 and Sphere 2 has mass m_2 . Starting from rest from a distance *R* apart, they are gravitationally attracted to each other.
 - (a) Compute the acceleration of Sphere 1 when the spheres are a distance R/2 apart.
 - (b) Compute the acceleration of Sphere 2 when the spheres are a distance R/2 apart.
 - (c) Compute the speed of Sphere 1 when the spheres are a distance R/2 apart.
 - (d) Compute the speed of Sphere 2 when the spheres are a distance R/2 apart.

Now assume that these spheres orbit their center of mass with the same orbit period, T.

- (e) Determine the radii of their orbits. Write your answer in terms of m_1, m_2, T , and fundamental constants.
- 2. A satellite of mass m is in the elliptical orbit shown below around Earth (radius $r_{\rm E}$, mass M). Assume that $m \ll M$.

- (a) Determine v_1 , the speed of the satellite at perigee (the point of the orbit closest to Earth). Write your answer in terms of r_1, r_2, M , and G.
- (b) Determine v_2 , the speed of the satellite at apogee (the point of the orbit farthest from Earth). Write your answer in terms of r_1 , r_2 , M, and G.
- (c) Express the ratio v_1/v_2 in simplest terms.
- (d) What is the satellite's angular momentum (with respect to Earth's center) when it's at apogee?
- (e) Determine the speed of the satellite when it's at the point marked X in the figure.
- (f) Determine the period of the satellite's orbit. Write your answer in terms of r_1, r_2, M , and fundamental constants.